
PostgreSQL 9.5
Postgres Open 2015

Dallas, TX

Magnus Hagander
magnus@hagander.net

Magnus Hagander
•PostgreSQL

•Core Team member
•Committer
•PostgreSQL Europe

•Redpill Linpro
•Infrastructure services
•Principal database consultant

Do you read...
•planet.postgresql.org

Development schedule
•June 10, 2014 - branch 9.4
•June 2014 - CF1
•August 2014 - CF2
•October 2014 - CF3
•December 2014 - CF4
•February 2015 - CF5
•August 2015 - Alpha2!

Current status
•Alpha 2 has been released
•Please help with review and testing!
•Packages now available!

Current status
•Statistics!

•2597 files changed
•215199 insertions (+)
•220459 deletions(-)

•Almost double that of 9.4!
•But..?

So what's really new
•Developer and SQL features
•DBA and administration
•Performance

New features
•Developer and SQL features
•DBA and administration
•Performance

Multi-column subselect
UPDATE

•Update more than one column with subselect
•SQL standard syntax
UPDATE tab SET (col1, col2) =
 (SELECT foo, bar FROM tab2)
 WHERE ...

Numeric generate_series
•Previously "only" integer

•And timestamps
•Now decimals and bigger numbers
postgres=# SELECT * FROM generate_series(0, 1, 0.1);
 generate_series

 0
 0.1
 0.2
 0.3

SKIP LOCKED
•Like SELECT NOWAIT
•Except skip rows instead of error
postgres=# SELECT * FROM a FOR UPDATE NOWAIT;
ERROR: could not obtain lock on row in relation "a"
postgres=# SELECT * FROM a FOR UPDATE SKIP LOCKED;
 a | b | c
----+----+----
 2 | 2 | 2
 3 | 3 | 3

Row level security
•Apply access policies per row
•Limit access to individual rows

•On top of tables and columns
•Regular ACLs still apply

•Superusers and owners bypass
•And BYPASSRLS roles

Row level security
postgres=# ALTER TABLE companies ENABLE ROW LEVEL SECURITY;
ALTER TABLE

postgres=# CREATE POLICY companies_manager
postgres-# ON companies
postgres-# FOR ALL
postgres-# TO public
postgres-# USING (manager = CURRENT_USER);
CREATE POLICY

Row level security
postgres=# SELECT * FROM companies;
 manager | company
---------+----------
 mha | Company1
 mha | Company2
 test | Company3
postgres=# \c postgres test
You are now connected to database "postgres" as user "test".
postgres=> select * from companies;
 manager | company
---------+----------
 test | Company3

Row level security
•Policies on any "regular" expression

•No aggregates!
•But quite complicated

•Multiple policies can be defined per table
•Results are ORed

•Does not affect cascading RI operations

Row level security
CREATE POLICY companies_manager_r
ON companies
USING (manager IN (
 WITH RECURSIVE t AS (
 SELECT person,manager FROM managers WHERE manager=CURRENT_USER
 UNION ALL
 SELECT m.person, m.manager FROM managers m
 INNER JOIN t ON t.person=m.manager
)
 SELECT person FROM t
))

INSERT ... ON CONFLICT
•INSERT ... ON CONFLICT DO {UPDATE | IGNORE}
•aka UPSERT
•Similar to MERGE

•Except better (in some ways)!
•Based on "speculative insertion"

INSERT ... ON CONFLICT
INSERT INTO test (id, t)
VALUES (2, 'foobar')
ON CONFLICT
DO NOTHING

INSERT ... ON CONFLICT
INSERT INTO test (id, t)
VALUES (2, 'foobar')
ON CONFLICT(id) DO
UPDATE SET t=excluded.t

INSERT ... ON CONFLICT
INSERT INTO counters(url, num)
VALUES ('/some/where', 1)
ON CONFLICT(url) DO
UPDATE SET num=counters.num+excluded.num

GROUPING SETS
•CUBE and ROLLUP

•But also fully generic
•"Super-aggregates"
•Partial sums etc

GROUPING SETS
postgres=# SELECT dept, count(*) FROM emps
postgres-# GROUP BY ROLLUP(dept);
 dept | count
-------+-------
 it | 3
 sales | 2
 | 5

GROUPING SETS
postgres=# SELECT dept, name, count(*), sum(payout)
postgres-# FROM payouts GROUP BY ROLLUP(dept, name);
 dept | name | count | sum
-------+-------+-------+------
 it | Eva | 3 | 400
 it | Johan | 2 | 350
 it | Olle | 1 | 200
 it | | 6 | 950
 sales | Erik | 1 | 120
 sales | Lisa | 2 | 220
 sales | | 3 | 340
 | | 9 | 1290

New features
•Developer and SQL features
•DBA and administration
•Performance

cluster_name
•New GUC
•Included in process title
•For multi-instance deployments
31589 ? Ss 0:00 postgres: mytestcluster: logger process
31591 ? Ss 0:00 postgres: mytestcluster: checkpointer process

IMPORT FOREIGN SCHEMA
•Import complete schema through FDW
•No need to manually create tables
postgres=# CREATE SCHEMA remoteschema;
CREATE SCHEMA
postgres=# IMPORT FOREIGN SCHEMA testschema FROM SERVER otherserver INTO remoteschema;
IMPORT FOREIGN SCHEMA
postgres=# \det remoteschema.*
 List of foreign tables
 Schema | Table | Server
--------------+-------+-------------
 remoteschema | test2 | otherserver
 remoteschema | test3 | otherserver
(1 row)

Foreign table inheritance
•Foreign tables can be in inheritance trees
•Which is used for partitioning
•Can be used for sharding

SET UNLOGGED
•Unlogged table property can be turned on and off
•Simple ALTER statement
postgres=# ALTER TABLE a SET UNLOGGED;
ALTER TABLE
postgres=# ALTER TABLE a SET LOGGED;
ALTER TABLE

ALTER SYSTEM RESET
•Reset config variable back to

•postgresql.conf
•default value

•Removes from postgresql.auto.conf file
postgres=# ALTER SYSTEM RESET work_mem;
ALTER SYSTEM
postgres=# SELECT pg_reload_conf();

commit timestamp tracking
•Optional tracking of commit timestamps

•track_commit_timestamp=on
•See when a row was committed etc?
postgres=# SELECT xmin, pg_xact_commit_timestamp(xmin) FROM a;
 xmin | pg_xact_commit_timestamp
------+-------------------------------
 787 | 2015-03-15 15:09:52.253007+00

postgres=# SELECT * FROM pg_last_committed_xact();
 xid | timestamp
-----+-------------------------------
 791 | 2015-03-15 15:11:38.709125+00

min and max wal size
•checkpoint_segments removed!
•Instead, control min and max size

•min_wal_size (default 80MB)
•max_wal_size (default 1GB)

•Checkpoints auto-tuned to happen in between
•Moving average of previous checkpoints

•Space only consumed when actually needed

recovery_target_action
•What happens when recovery completes

•pause
•promote
•shutdown

•Replaces pause_at_recovery_target

pg_rewind
•Ability to rewind WAL on old master
•Re-use former master without rebuild

SSL code refactoring
•OpenSSL independence
•Though only OpenSSL supported so far...
•Add support for Subject Alternate Name

pg_stat_ssl
•View status of existing SSL connection
•Mostly same info as contrib/sslinfo
•But for all connections

pg_stat_statements
•New values for execution times

•Max
•Min
•Mean
•Stddev

pg_xlogdump
•Now takes --stats argument
•Find out what takes space in the xlog
•(and of course look at details like before)

New features
•Developer and SQL features
•DBA and administration
•Performance

BRIN indexes
•Block Range Index

•Formerly known as MinMax
•But supports other opclasses too

•Very small indexes
•Stores only bounds-per-block-range

•Default is 128 blocks
•Scans all blocks for matches
•Best suited for naturally ordered tables

BRIN indexes
postgres=# CREATE INDEX a_brin ON a USING BRIN(a);
CREATE INDEX
postgres=# EXPLAIN SELECT * FROM a WHERE a=3;
 QUERY PLAN
--
 Bitmap Heap Scan on a (cost=12.01..16.02 rows=1 width=12)
 Recheck Cond: (a = 3)
 -> Bitmap Index Scan on a_brin (cost=0.00..12.01 rows=1 width=0)
 Index Cond: (a = 3)

postgres=# CREATE INDEX a_brin_b ON a
postgres-# USING BRIN(b) WITH (pages_per_range=1024);
CREATE INDEX

GIN pending list
•Max size of GIN pending list configurable

•Used for GIN fast update
•Control how often cleanup happens
•Prefer VACUUM

•Previously controlled by work_mem
•Now gin_pending_list_limit

•Both GUC and storage parameter

GiST index only scan
•Index only scan for GiST indexes
•Most, but not all, opclasses

WAL compression
•Support for compressing full page images
•Smaller WAL

•Faster writes, faster replication
•Costs CPU

•Only compresses FPIs
•Still useful to gzip archives!

•Also new WAL format and CRC

Sorting enhancements
•Abbreviated keys for sorting

•text
•numeric

•Pre-check for equality
•memcmp is fast!

•more...

Locking enhancements
•Internal atomic operations API
•lwlock scalability increased using this
•Many more lockless operations

•E.g. triggers and foreign keys
•etc.

There's always more

There's always more
•Lots of smaller fixes
•Performance improvements
•etc, etc
•Can't mention them all!

Tiny favorite?
•psql detects if sent a custom format dump
•We all did this:
mha@mha-laptop:~$ 9.4/bin/psql -f /tmp/custom.dump postgres
psql:/tmp/custom.dump:1: ERROR: syntax error at or near "PGDMP"
LINE 1: PGDMP�

•Now:
mha@mha-laptop:~$ head/bin/psql -f /tmp/custom.dump postgres
The input is a PostgreSQL custom-format dump.
Use the pg_restore command-line client to restore this dump to a database.

What's your biggest
feature?

•UPSERT?
•GROUPING SETS?
•RLS?
•Foreign Table Inheritance?
•BRIN?
•Other?

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

http://www.hagander.net/talks/

This material is licensed CC BY-NC 4.0.

http://www.hagander.net/talks/

	Magnus Hagander
	Do you read...
	Development schedule
	Current status
	Current status
	So what's really new
	New features
	Multi-column subselect UPDATE
	Numeric generate_series
	SKIP LOCKED
	Row level security
	Row level security
	Row level security
	Row level security
	Row level security
	INSERT ... ON CONFLICT
	INSERT ... ON CONFLICT
	INSERT ... ON CONFLICT
	INSERT ... ON CONFLICT
	GROUPING SETS
	GROUPING SETS
	GROUPING SETS
	New features
	cluster_name
	IMPORT FOREIGN SCHEMA
	Foreign table inheritance
	SET UNLOGGED
	ALTER SYSTEM RESET
	commit timestamp tracking
	min and max wal size
	recovery_target_action
	pg_rewind
	SSL code refactoring
	pg_stat_ssl
	pg_stat_statements
	pg_xlogdump
	New features
	BRIN indexes
	BRIN indexes
	GIN pending list
	GiST index only scan
	WAL compression
	Sorting enhancements
	Locking enhancements
	There's always more
	There's always more
	Tiny favorite?
	What's your biggest feature?

